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LETTER TO THE EDITOR 

A remark on possible violations of the Pauli principle? 

L C BiedenharnS, P TruiniSO and H van Dam11 
$ Department of Physics, Duke University, Durham, NC 27706, USA 
1 1  Department of Physics, University of North Carolina, Chapel Hill, NC 27514, USA 

Received 24 October 1988 

Abstract. Recently Ignatiev and Kuzmin developed a theoretical model to implement small 
violations of the Pauli principle. We remark that the Pauli principle is unique among 
discrete symmetries, and that in consequence any apparent violation actually signals new 
physical degrees of freedom, with no violation of the Pauli principle. We construct an 
algebraic model which incorporates the algebra of Ignatiev and Kuzmin and leads to the 
same apparent violations, yet preserves the Pauli principle. Our algebra is that of a Jordan 
pair, an algebraic concept which provides a natural framework for structures that do not 
assume bilinear commutation relations. 

The construction of a theoretical framework [ 13 in which arbitrarily small violations 
of the Pauli principle may exist has recently been discussed [2,3]. Let us assume that, 
for purposes of discussion, such a violation has been found; what would this mean? 

To answer this question it is helpful to consider the historical background in the 
development of the Pauli principle. Bohr in his Aufbauprinzip for atomic structure 
assumed implicitly the equivalent of the Pauli principle. Pauli, as is very well known, 
made the concept explicit by requiring distinct quantum numbers for each electron. 

It was Dirac who recognised that the fundamental underlying concept was that of 
a discrete involutary symmetry: the exchange of equivalent particles. Discrete sym- 
metries, however-unlike continuous symmetries (such as rotational symmetry)-need 
not be quantal symmetries, as Dirac [4] pointed out in 1949. Since the well known 
violations of the discrete symmetries of parity and time-reversal invariance verify 
Dirac’s remark, there would seem to be no objection in principle to a similar violation 
of the Pauli principle. We will argue, however, that the symmetry underlying the Pauli 
principle cannot be violated by an arbitrarily small amount; any such apparent violation 
only signals new degrees of freedoml. 

At the classical level, the concept of nearly identical particles leads to the Gibbs 
paradox: a gas containing equally two species of particles which differ infinitesimally 
from being identical has a macroscopically large entropy change as the infinitesimal 
difference vanishes. Land6 in particular emphasised the necessity of quantum 
mechanics to eliminate such unphysical discontinuities [6,7]. 

t Research conducted under the auspices of the Institute of Field Physics, University of North Carolina, 
Chapel Hill, NC; supported in part by the Department of Energy and the National Science Foundation. 
5 Permanent address: Dipartimento di Fisica, v Dodecaneso 33, 16146 Genova, Italy. 
9 In a similar way it has been remarked [ 5 ]  that parastatistics is equivalent to ordinary statistics with 
additional internal degrees of freedom. 
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Quantum mechanically, as Land6 pointed out, the particles would have state vectors 
consisting of at least two distinct states mixed infinitesimally. The resulting thermo- 
dynamic ensemble shows no discontinuity as the infinitesimal mixing parameter goes 
to zero. 

Let us analyse this resolution of the paradox further. The key point is to recognise 
that the concept of identity has been transferred from ‘classical particle’ to quantal 
state. In other words, the concept of classical particles which differ continuously from 
each other can only avoid unacceptable logical paradoxes by having the particles 
possess at least two non-identical quantal states lying in the same Hilbert space. 
Expressed still differently, but equivalently, arbitrarily small (continuous) violations 
of the Pauli principle imply new degrees of freedom (new coherent quantal states of 
the particle). By transferring the notion of identity from ‘particle’ to quantal state, 
quantum mechanics achieves, via coherent mixing, states that continuously combine, 
simultaneously, elements of both identity and non-identity (the two-slit problem in a 
different guise). 

To demonstrate the consistency of our viewpoint, we will construct a model (with 
a new degree of freedom) and show that in this way we can reproduce exactly the 
algebra of [ 11. In particular this will show that the consequences found in [ 1 3  can be 
physically significant but need not be interpreted as violations of the Pauli principle. 

We remark that the algebraic properties of our model (the Jordan pair construction) 
are of independent interest. 

Let us denote by b and bt the annihilation and creation operators for a field B 
which is such that the one-particle state is a mixture of a one-electron state le) and a 
one-muon state Ip). (The notation e and p is suggestive of lepton family number 
violation (which we discuss below), but for the moment e and p are merely arbitrary 
labels.) As in [ 11, we disregard momentum and spin variables. Accordingly we have 

b’(O)=cos 8,le)+sin 6,Ip). (1) 

This field creates also a two-particle state /2), which-in this simple model with no 
momentum and spin variables-can only be a tensor product of an le) state and a ip) 
state-two le) and two Ip) being forbidden by the Pauli principle: 

b’ll) = 2 cos 8, sin 8,le)lp) 

=sin 28,12). (2) 

Here sin 288 is the parameter which corresponds to the Pauli-violating parameter 
p introduced by Greenberg and Mohapatra [2] and by Ignatiev and Kuzmin [ 11. We 
thus require 0, to be very small. A three-particle state is not allowed because of the 
Pauli principle. Therefore we obtain 

b’lO)=ll) btll)=P12) b72) = 0 p =sin 28, (3)  

b10) = 0 bll) = 10) bP)=PI l ) .  (4) 

and we also have 

The third equation follows from the fact that b is the HC of bt. In fact suppose 
b12) = al l ) ,  then 

(2b“l) = (b12))’11) = 5 

( 2 b t l ) = P ( 2 / 2 ) = P .  
( 5 )  
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Hence 5 = p ;  but p is real so a = p. The operators b and bt are not required to obey 
any anticommutation relation, as pointed out by Ignatiev and Kuzmin [ 11. However, 
the following cubic relations hold for such operators: 

b 2 b t + P 2 b t b 2 =  p z b  

b2bt+ b'b2+ bb'b =Tr(bb')b 

with Tr( bbt) = 1 +p' ,  plus the HC relations. We also have b3 = bt3 = 0.  These relations 
are equivalent to the ones found by Ignatiev and Kuzmin. The algebraic relations ( 6 ) ,  
satisfied by the operators b and bt are not bilinear but quadratic in b and linear in b t .  
This is a clear indication that we are dealing with an underlying Jordan pair structure. 

The notion of a Jordan pair provides a natural framework for the algebra described 
by ( 6 )  together with b3 = bt3 = 0.  This suggests a new way to look at this subject and 
to find generalisations. 

A Jordan pair is a pair of moduli [8,9,10] V = (V+,  V-) which act on each other 
through the quadratic maps U,+: V- -$ V+, U,- : V++ V- such that 

(i) Ux+y- is quadratic in x+ and linear in y - ,  
(ii) vx+,y- U,+ = U,+ vy-,,+ , 
(iii) vuy+,-,,- - Vx+,v,-,+, 
(iv) ux+uy-ux+, 

- 

where 

vx+,y-(z+) = ( U x + + r +  - U,+ - U,+)(F) (7) 

is the linearisation of U,+. The same relations hold with the signs interchanged. 
A simple example of a Jordan pair is given by the rectangular matrices. Suppose 

V+ is the set of m x n matrices and V- the set of n x m matrices; how can we define 
a multiplication which maps (V+,  V-) onto itself? The answer is: use the quadratic 
map Ux+y- = x+y-x+ ,  x+ E V+, y -  E V-. It is straightforward to check that the proper- 
ties (i)  through (iv) defining Jordan pairs are satisfied by such a map. The notion of 
Jordan pairs also extends the concept of Jordan algebras. 

The Jordan pair ( V+, V-), which corresponds to ( 6 )  consists of 3 x 3 matrices, and 
their Hermitian conjugates, and of a quadratic map 

U,+y- = Tr(x+y-)x+. (8) 

The special matrices b and bt belong to V' and V- respectively and are defined by 
the relations ( 6 ) .  The second relation involves directly Ubb'. 

In the Jordan pair language the interaction Hamiltonian of [l] is 

ubbt + Ubtb. (9) 

Tr(bbr) (b+ b'). (10) 

Hence it can be written as 

One can represent the Hamiltonian as a 3 x 3 Hermitian matrix which consists of the 
off-diagonal part (10) and the diagonal matrix N, which represents the number operator 
[l]. One can also relate N, quite naturally, to the Jordan pair structure by noticing 
that the commutation of N and b and bt is an inner derivation of the Jordan pair. 

The inner derivation [ 6 ]  6(x, y )  defined by an element (x, y )  of a Jordan pair V is 

S(X, v )  = ( V x . y ,  - Vy,,) (11) 
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and it is such that, in analogy with the standard definition for an algebra, 

Id- E ~ ( x ,  y )  (12) 
is an automorphism with infinitesimal parameter E. 

It is important to stress that the minus sign in (1 1) is essential in order to yield the 
automorphism (12), and holds in general for any Jordan pair. It is precisely this minus 
sign which allows us to reproduce the standard commutation relations [ l]  of N with 
b and bt. 

The appearance of a trace in the definition of Ubbt suggests that the second of the 
relations (6) is related to the anticommutation relation of ordinary field theory. In 
quantum field theory for half-integer spin the creation and annihilation operators are 
defined on the Fock space F which is the direct sum of antisymmetric tensor product 
of Hilbert spaces. The definition is [ l l  and references therein], omitting the spin 
variables, 

[ b ( f ) + l n ( p l , .  . . , p n )  = J ~ ( p ) + ~ + ~ ( p ,  P I , .  . . , pn)(dp) (13) 

[bt(f)41n(~1,...,~n)= C (-1)'+'4n-1(~1,*** ,ij,***~n)Xf(pj) (14) 
j=1 

where 4 E F, f is a test function, n refers to the n-particle component of a vector in E 
It follows that 

[b ( f ) ,  bt(E)l+ = (g , f ) .  (15) 
In the present case we can define the field B, which is the mixing of the eletron 

field and the muon field, as acting on the Fock space: 

F = Fe x F, 

where Fe and F, are the usual Fock spaces for the electron and the muon, and F is 
their tensor product (which we need not symmetrise or antisymmetrise). The definition 
of the annihilation and creation operators is not straightforward. We know that a 
consistent formulation cannot lead to the standard anticommutation relations; therefore 
the definitions of b and bt cannot be the standard definitions (13) and (14). In fact 
if we applied such definitions straightforwardly we would not get 

b12) = PI1) 
which we need to have for a constituent definition of the field B. The relation that 
takes the place of the relation (15) is suggested by the definition of the quadratic map 
of the Jordan pair: 

Ubbt=Tr(bbi)b. (16) 
Instead of the anticommutator we have a quadratic map typical of a general Jordan 

pair. As the analogue of the scalar product, we have the trace. For Jordan algebras, 
which are in a sense a special case of Jordan pairs, one has two equivalent notions, 
quadratic map and symmetric bilinear product. Thus, these Jordan algebras form a 
bridge to the more general concept of Jordan pairs, where, as in our case, one has 
only a quadratic map. 

Currently we are investigating this type of field further. 
Let us summarise. We have developed above an algebraic model reproducing the 

algebra, and physical consequences of [l] ,  without, however, any violation of the Pauli 
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principle. The model ascribes to the ‘electron’ a new degree of freedom (two states e 
and y). If we take the model literally, as the actual electron and muon, then the 
relevant quantum number is the family label and the mixing we require is simply a 
violation of lepton family number (see e.g. [12] and references therein). Clearly a tiny 
interaction mixing muons into electron states would lead to a triplet spin component 
in the helium atom ground state, signalling physically an apparent (but not actual) 
violation of the Pauli principle. The essence of our model is that lepton family number 
violation makes significant for charged leptons an analogue to the Kobayashi-Maskawa 
mixing matrix. This implies interesting new physics, but our purpose here is only to 
validate our assertion: the Pauli principle is unique and cannot be truly violated without 
engendering unacceptable paradoxes. Any apparent violation is physically significant 
and implies new degrees of freedom. 

We would like to acknowledge helpful discussions with Dr Peter Herczeg and to thank 
Dr 0 W Greenberg for the favour of a preprint [2]. 
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